skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhat, N D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present a low-frequency (170–200 MHz) search for prompt radio emission associated with the long GRB 210419A using the rapid-response mode of the Murchison Widefield Array (MWA), triggering observations with the Voltage Capture System for the first time. The MWA began observing GRB 210419A within 89 s of its detection by Swift, enabling us to capture any dispersion delayed signal emitted by this gamma-ray burst (GRB) for a typical range of redshifts. We conducted a standard single pulse search with a temporal and spectral resolution of $$100\, \mu$$s and 10 kHz over a broad range of dispersion measures from 1 to $$5000\, \text{pc}\, \text{cm}^{-3}$$, but none were detected. However, fluence upper limits of 77–224 Jy ms derived over a pulse width of 0.5–10 ms and a redshift of 0.6 < z < 4 are some of the most stringent at low radio frequencies. We compared these fluence limits to the GRB jet–interstellar medium interaction model, placing constraints on the fraction of magnetic energy (ϵB ≲ [0.05–0.1]). We also searched for signals during the X-ray flaring activity of GRB 210419A on minute time-scales in the image domain and found no emission, resulting in an intensity upper limit of $$0.57\, \text{Jy}\, \text{beam}^{-1}$$, corresponding to a constraint of ϵB ≲ 10−3. Our non-detection could imply that GRB 210419A was at a high redshift, there was not enough magnetic energy for low-frequency emission, or the radio waves did not escape from the GRB environment. 
    more » « less
  2. Abstract We present the discovery and timing of the young (age ∼28.6 kyr) pulsar PSR J0837–2454. Based on its high latitude ( b = 98) and dispersion measure (DM = 143 pc cm −3 ), the pulsar appears to be at a z -height of >1 kpc above the Galactic plane, but near the edge of our Galaxy. This is many times the observed scale height of the canonical pulsar population, which suggests this pulsar may have been born far out of the plane. If accurate, the young age and high z -height imply that this is the first pulsar known to be born from a runaway O/B star. In follow-up imaging with the Australia Telescope Compact Array (ATCA), we detect the pulsar with a flux density S 1400 = 0.18 ± 0.05 mJy. We do not detect an obvious supernova remnant around the pulsar in our ATCA data, but we detect a colocated, low-surface-brightness region of ∼15 extent in archival Galactic and Extragalactic All-sky MWA Survey data. We also detect colocated H α emission from the Southern H α Sky Survey Atlas. Distance estimates based on these two detections come out to ∼0.9 kpc and ∼0.2 kpc, respectively, both of which are much smaller than the distance predicted by the NE2001 model (6.3 kpc) and YMW model (>25 kpc) and place the pulsar much closer to the plane of the Galaxy. If the pulsar/remnant association holds, this result also highlights the inherent difficulty in the classification of transients as “Galactic” (pulsar) or “extragalactic” (fast radio burst) toward the Galactic anticenter based solely on the modeled Galactic electron contribution to a detection. 
    more » « less
  3. Abstract We report the independent discovery of PSR J0026-1955 with the Murchison Widefield Array (MWA) in the ongoing Southern-sky MWA Rapid Two-metre pulsar survey. J0026-1955 has a period of ∼1.306 s, a dispersion measure of ∼20.869 pc cm−3, and a nulling fraction of ∼77%. This pulsar highlights the advantages of the survey's long dwell times (∼80 minutes), which, when fully searched, will be sensitive to the expected population of similarly bright, intermittent pulsars with long nulls. A single-pulse analysis in the MWA's 140–170 MHz band also reveals a complex subpulse drifting behavior, including both rapid changes of the drift rate characteristic of mode switching pulsars, as well as a slow, consistent evolution of the drift rate within modes. In some longer drift sequences, interruptions in the otherwise smooth drift rate evolution occur preferentially at a particular phase, typically lasting a few pulses. These properties make this pulsar an ideal test bed for prevailing models of drifting behavior such as the carousel model. 
    more » « less
  4. ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit. 
    more » « less
  5. Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA. 
    more » « less
  6. Abstract The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories. 
    more » « less